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ABSTRACT

The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ul-
timately would have numerous benefits including increased energy resilience, reduced reliance on foreign ener-
gy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,
and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is
the basis of several decades of research to competitively bring energy-scale production into reality; however,
many challenges still remain for making algal biofuels economically viable. Addressing current challenges asso-
ciated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly
evaluate alternative algal production system designs, and perform large-scale assessments considering multiple
scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics
Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture
allows the model to: 1) interface with external biomass production and resource assessment models, as well
as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to
enable operational and economic assessments of multiple design configurations, including the integration of cur-
rent and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific
techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline
open-pond production system determined by model harmonization efforts conducted by the U.S. Department
of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass
productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs
can vary significantly depending on location and biomass productivity and that integration of novel dewatering
equipment, order of operations, and equipment scaling can also have significant impacts on economics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

emissions [5], wastewater remediation [6-8], potential non-compete
with food resources [9], increased national energy independence and

Biofuels provide a critical component in a renewable energy portfo-
lio, primarily because of the growing demand for sustainable, renew-
able, and reduced-emission liquid transportation fuels. Autotrophic
microalgae provide a promising alternative to conventional fossil fuels
in part due to their versatility in growth media and growing conditions,
the variety of strains available to satisfy locally-available resources and
environmental conditions [1], their high-density growth per unit area
[2], high lipid content [3], and their ability to provide a variety of differ-
ent fuel end-products including drop-in fuels [4]. In addition, a number
of key policy issues are addressed including reductions in GHG
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security, and strengthening rural economics and the green energy mar-
ket. Microalgae processing and conversion can also produce valuable
co-products, including ethanol, methane, fertilizer, livestock feed, and
co-firing [10], though it should be noted that these characteristics are
highly dependent upon the strain of microalgae, how it was grown,
and the processes used for harvest and dewatering. Third generation
feedstocks or “energy crops,” which include microalgae, have been
shown to provide reduced emissions relative to diesel-derived petro-
leum sources while remaining non-toxic and biodegradable [11-13].
These benefits, however, come with challenges of sustainable
resource use, in terms of water, land, CO,, nutrients, and required infra-
structure [14-17]. Significant technological and engineering challenges
need to be addressed in order to achieve required energy-scale produc-
tion as well as making this energy resource economically feasible and
cost competitive with petroleum-based fuels [2,18]. Nonetheless,
under the U.S. Energy Independence and Security Act (EISA) of 2007,
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the Renewable Fuels Standard (RFS) mandates the production
and use of 36 billion gallons per year (BGY) of renewable fuels by
2022, of which 5 BGY are to be derived from advanced fuels and
biodiesel [19].

One of the challenges of assessing algal production systems is the
temporal and spatial variability of biomass productivity and the impact
that this variability has on the economics of converting microalgae to
biofuels. Evaluating long periods of record (~30-years) allows for the
consideration of extreme meteorological events and patterns which
directly influence the economics of biomass production. There have
been numerous studies investigating the feasibility of commercial
microalgae production facilities, but a majority of these studies are
limited to a specific location or use broad biomass productivity assump-
tions to perform regional assessments. To our knowledge, existing
techno-economic assessment (TEA) models lack the ability to efficiently
and inherently assess algal production systems around local variability.
This paper describes the Algae Logistics Model (ALM), an integrated,
techno-economic, spatiotemporally-aware system dynamics and data
management system that is comprised of a design configuration of op-
eration modules that evaluate the capacity, throughput, mass balance,
energy requirements, performance, and economics via capital expendi-
tures (CapEx) and operational expenditures (OpEx) at fine spatial and
temporal scales. The ALM stems from another modeling effort, the Bio-
mass Logistics Model (BLM) which focuses on terrestrial feedstock sup-
ply systems [20]. The ALM is built using a modular framework, thus
providing the required analysis flexibility to address current challenges
by evaluating a suite of design, equipment, and operation scenarios. The
flexible nature of the ALM architecture allows the model to: 1) interface
with external biomass production and resource assessment models, as
well as other relevant datasets including those with spatiotemporal
granularity; 2) interchange design processes to enable operational and
economic assessments of multiple design configurations, including the
integration of current and new innovative technologies; and 3) conduct
trade-off analysis to help understand the site-specific techno-economic
and inform technology decisions. Furthermore, with the ability to inter-
face with advanced biophysical-based production and resource assess-
ment models such as those found in the Biomass Assessment Tool
(BAT), thousands of sites can be evaluated with relatively little effort
[13,15,16].

Several prior feasibility studies have been performed using
microalgae for bioenergy production [3,21,22]. These studies assessed
microalgae cultivation for biofuel and biogas production using available
engineering and biological technologies. The economic viability of the
systems varied based on biomass productivity and the algal production
system design assumptions. Assessments were limited to a single site
and therefore did not consider the spatial constraints of the proposed
design. Recent modeling efforts demonstrate various pathways for
cultivating and converting microalgae to bioenergy [13,22-26]. These
assessments address many of the existing challenges associated with
making microalgae a viable resource for bioenergy production.

Richardson et al. [24] performed an assessment using a Monte Carlo
simulation that relied upon several key input variables, including evap-
oration rate, water cost, water depth, days of operation, cost of algal
growth medium, carbon dioxide, algae production rate, and algal
oil content. The assessment included two hypothetical scenarios of
commercial-scale microalgae farms. The first scenario used data collect-
ed from literature, while the second scenario used data collected from a
0.2-ha experimental algal farm in the Southwestern United States. Both
scenarios assumed 405 ha of open pond with microalgae biomass pro-
ductivity ranging from 20-30 g/m?-day to 18-25 g/m?-day and a lipid
content ranging from 20-40% to 40-60%, respectively. “Scenario 1”
assessed a production window of 10 months/year with an average pro-
duction of nearly 21,400 L,;/ha-year, while “Scenario 2” assumed a con-
tinuous growth environment producing over 42,600 L,;/ha-year. The
study concluded that costs are highly variable due to inherent risks in
producing biofuel from microalgae.

Zamalloa et al. [25] performed a techno-economic assessment using
microalgae to produce methane to generate electricity through anaero-
bic digestion. Many capital and operating expense assumptions were
derived from the Benneman and Oswald [27] report. Three studies
using constant daily productivity were conducted to assess the viability
of algal biomass as a resource for biogas production. Sensitivity analysis
was performed considering several factors. While the study did not in-
vestigate microalgae for biofuel, it is important to recognize other path-
ways for producing energy from microalgae, especially using methods
that could be integrated into algal farms to produce power and help
reduce overall costs of producing algal biofuels.

In 2011, Davis et al. [23] performed a techno-economic study on
autotrophic microalgae for open-pond and photobioreactor systems.
The study used a process simulation model to perform mass and energy
balances to evaluate the two algal production systems. A top-down ap-
proach was taken by first setting a biofuel production goal and then,
based on biomass productivity and farm operating assumptions, deter-
mining the infrastructure required to produce the biofuel target. For the
open-pond scenario, a steady-state simulation was performed assuming
a daily algae biomass productivity of 25 g/m2-day with a lipid content
of 25% and an operation window of 330 days per year. The process
simulation model was used to simulate a microalgae facility producing
10 MM gal/year of biofuel requiring a facility footprint of over
2900 ha, with an open-pond area representing approximately 1950 ha
of the facility total. The study determined that triacylglycerol (TAG)
could be sold for $8.52/gal and that the price could be further reduced
by using co-products onsite or selling them in the open-market.

Sun et al. [26] performed a comparative analysis of existing studies
that explored the cost of producing TAG. The comparative analysis in-
cluded U.S. DOE national laboratories, industry, and academia. These
studies included a diverse range of assumptions and end products. As
aresult of this diversity, the cost associated with obtaining TAG varied
significantly. Sun et al. used a normalized set of input assumptions for
the previous studies and was able to reduce economic variability with
cost ranging from $10.87/gal to $13.32/gal.

Recently, the U.S. DOE's Bioenergy Technologies Office began an
initiative to harmonize existing modeling efforts across its national lab-
oratories [28]. Existing techno-economic, resource assessment, and life-
cycle analysis models were coordinated to establish a conservative
baseline algal production system design. The harmonized effort enabled
quantification of cost, greenhouse gas emissions, and resource require-
ments using consistent infrastructure and operating assumptions from
cultivation through biodiesel production. In-depth discussion of the
original techno-economic, resource assessment and life-cycle models
can be found in Davis et al. [23], Wigmosta et al. [13], and Frank et al.
[29], respectively. The harmonized effort assessed several scenarios for
the 5 BGY goal including a steady state and seasonal productivity sce-
nario. Potential suitable algal farms within a region around the U.S.
Gulf Coast were clustered and the average productivity was assessed.
The cost of biodiesel between clusters varied as much as $3.50/gal, dem-
onstrating the direct impact spatial variability can have in algal produc-
tion systems. Another assessment investigated the impacts of using
steady-state productivity versus dynamic variability driven by seasonal
climatic conditions. Assessments using the seasonal scale increased the
cost of biodiesel by nearly $1.00/gal, therefore demonstrating the
impact of temporal variability within algal production systems.

While these studies contribute to overcoming existing barriers in
microalgae fuel production, they do not address the temporal and spa-
tial dynamics at the fidelity needed to assess large numbers of individu-
al algal production system sites, such as the ~90,000 potential unit farm
pond sites identified by Wigmosta et al. [ 13]. Understanding the impacts
of temporal and spatial variability on production cost is important to the
viability of algal biofuel production. Furthermore, the ability to assess
and integrate new processes and technologies for assessment into an
algal production system design can be challenging. The ALM presented
in this paper provides a mechanism to address temporal and spatial
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variability while enabling assessment of multiple scenarios that
incorporate new, innovative technologies and for open pond design
configurations.

2. Model and methodology
2.1. Algae Logistics Model

The motivation behind the development of the ALM was derived
from the current limitations of existing TEA models to assess algal
production systems. These limitations include the ability to: 1) rapidly
assess alternative algal production system designs including the use of
multiple algal strains; 2) perform automated large-scale assessments
considering multiple design and multiple strain selections for thou-
sands of potential sites; and 3) assess both spatial and temporal variabil-
ity and trade-offs of multiple scenarios.

The ALM is a compilation of process simulation modules (Fig. 1) de-
veloped in a system dynamics software package (PowerSim™) and is
arranged to allow user-defined configurations and initialization of static
and/or variable parameters as is required. The modular design approach
provides flexibility in tailoring a system design to local environment and
economic dependencies, specific equipment types and sizes, capacity
and throughput, and/or final end product(s). The ALM includes an inter-
nal database comprised of data from the National Agricultural Statistical
Service (http://www.nass.usda.gov), Bureau of Labor Statistics (http://
www.bls.gov/data/), and vendor information of equipment specifica-
tions. The streaming of the system processes through mass and energy
outputs and returns, accumulate and adjust through the system and ul-
timately achieve OpEx and CapEx for the site and design of interest. Be-
cause of the model's inherent ability to modify system designs,
parameter sensitivity analysis can be implemented to understand the
strengths, weaknesses, and impacts of a particular system configuration
as well as individual components within the design [20]. The modules
within the ALM are programmatically assessed at the process level,
and high-fidelity process module results are aggregated, in time- and
process-space, to provide an overall assessment of the algal production
system design. The ALM also includes an external C++ based software
controller that interfaces with PowerSim™ to initialize process module
parameters, advance the user-defined time-step, iterate through the
modules for the duration of the simulation, and run for multiple sites
(Fig. 1). The baseline configuration of the ALM is based on the prior-
referenced U.S. DOE model harmonization effort [28] which draws to-
gether parameters and assumptions from a number of studies [29-36].

A core capability within the ALM is its consideration and handling of
a multi-faceted logistics space that controls the management and
movement of ‘materials’. The logistical sub-types within the ALM

address: 1) information; 2) process and production; and 3) required
physical resources. First, from within the model itself, the management
and flow of information, including physical materials, energy, and
expenses, are explicitly handled where dynamic process states are ac-
cepted as inputs from upstream components, processed according to
established parameters, rule sets, and environment conditions, then
passed to the next downstream process at each time-step. The informa-
tion logistics are highly dynamic so as to handle process and component
changes within the modeled production system without having to
change any aspect of how information is retrieved and passed through
the system. Second, the process and production aspects of the model,
and representation thereof, are handled where the logistics domain
space is within the production system itself. The capability is brought
forth by the inherent ability to join process system components (i.e.,
flocculation to centrifugation to solvent-based lipid extraction or sedi-
mentation to centrifugation to apparatus-based lipid extraction) and
dynamically add capacity, including associated capital and operational
expenses, to individual components to meet required material flow de-
mands. The production logistics within the ALM allow for analyzing the
quantity of materials passing through the value chain in order to opti-
mize capital efficiency and production capability. Lastly, the more com-
monly regarded aspect of logistics involves the management and
movement of physical resources from an origination point to a location
of need. For the ALM, these include the external required resources to op-
erate a production facility, specifically including water, nutrients, and
CO,, and explicitly considering the availability, quantity and delivery ex-
penses. The external physical resources provide the starting point for
evaluating the process chain at a given site and helping to determine
site feasibility. While the ALM can internally handle resource logistics
based inputs, these are derived from published material, industry practice
or expert opinion. To garner spatiotemporally explicit logistics-based re-
source inputs, the ALM was designed to accept time-series inputs from
the BAT model where the nearest and most acceptable resource availabil-
ity is identified and transported using graph-theory based least-cost
routing [13,16]. This ultimately provides, at an individual site, not only
the required quantity of material based on current time-step environ-
ment conditions, but also the cost, and transport energetics.

2.1.1. Model inputs

Key time-varying inputs to the ALM include site-specific algal
biomass productivity, evaporative water loss, and CO, and nutrient
(N and P) demand. User-defined static model inputs include lipid frac-
tion and unit pond size. Additionally, inputs for the number of unit
ponds at a site, the land value, expenses of site preparation and produc-
tion site delivery of water, nutrients, and CO, can be included as static or
spatially-varying values. The model time-period is simply established
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Fig. 1. Graphical representation of the process simulation. Key inputs and outputs from the ALM and the underlying databases.
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by the bounds of records included in the key time-varying inputs. Being
driven by the algal production system design, the ALM queries its inter-
nal database tables to retrieve equipment cost parameters and perfor-
mance specifications for each module in the design. Site-specific data
is also retrieved from the internal database to pull local constraints
and costs for elements such as labor rates, maintenance and insurance,
and tax and regulation data [20]; however, these values can also be
overridden with static values if the user has more relevant information
or wants to run sensitivity analyses in this regard. The collection of input
and internally-accessible data, along with user-specified initial condi-
tions for a given site are processed through the ALM to ultimately deliv-
er a time- and process-aggregated cost assessment for the given design.

In addition, ALM tracks and outputs specific user-configured process/
equipment CapEx and OpEx, mass and energy, and requirements for in-
frastructure, water, nutrients, pumps, harvest/dewatering, extraction,
upgrading, anaerobic digestion, transportation, power consumption
and more (Fig. 2). The process-specific level of granularity allows for
an assessment of resource, cost, and energy barriers to better under-
stand where design improvements are required and can be made.

2.1.2. Process streams

The ALM was developed to allow for an adaptive flow of data
through the model framework using a “plug-and-play” approach. This
allows for the dynamic interchange of information amongst the
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user-defined process modules, no matter which process steps and
equipment are added or removed. Process module constants can be
initialized through user input or accepted with the model defaults.
Time-varying data, such as biomass growth and evaporative water
loss, is read in at a user-specified time-step and will have an effect
through the full system as it is propagated through downstream process
modules. The ALM initializes the downstream parameters for each
process module based on the output from the upstream process. For ex-
ample, the equipment and number of units of equipment required to
harvest and dewater the biomass are determined based on the volumet-
ric flow rate which changes at each process step as additional water is
removed. The operation modules process the inflow streams according
to the equipment's capacity and performance parameters. The output
streams are then passed to the next downstream process and so on
until the sequence of processes for the given time-step is complete. En-
ergetics and operational expenses associated with running the equip-
ment is determined at each process-step and is preserved for the
individual processes, as well as aggregated through the system for
each time-step. The mass balances of the various streams (i.e., biomass,
water, nutrients, and carbon) are managed at the individual process
modules and are propagated and tracked throughout the system. For
example, as part of the sedimentation process in the baseline ALM con-
figuration, the majority of the water and a small fraction of algal bio-
mass are routed back to the pond, whereas the majority of the algae
and the remaining water are forwarded on to the flocculation process
(Fig. 3). The separation of the mass from the sedimentation to the floc-
culation process is tracked and balanced throughout the model and is
reflected in the number of equipment units required (i.e., CapEx) and
associated energy required for pumping, equipment operations, main-
tenance, etc. (i.e., OpEX).

2.1.3. Equipment scaling

Throughout the model and through each time-step, equipment units
for the individual processes are added to the production system, as re-
quired to meet the biomass production demand and process of the asso-
ciated flow of material. The addition of individual units is dictated when
volumetric flows, as a function of biomass productivity, exceed the ca-
pacity and throughput specifications defined in the internal equipment
database along with the number of units already added to the individual
process. Although individual equipment units are accumulated as re-
quired for the model time-series, each process module will only operate
the minimum number of equipment units required to meet the demand
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Sedimentation
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for the time-step, otherwise, non-operationally required equipment
units remain idle. This approach brings in some cost-efficiencies for
the overall system OpEx in terms of energy savings and other associated
operational expenses. Conversely, assessing CapEx at peak production
rates could create additional expenses to the system due to the limited
number of days that the peak biomass production occurs. For this rea-
son, additional analysis on optimal site scaling, to determine trade-offs
between additional equipment and production potential, has been
explored in a follow-on study [37].

2.14. Resource recycling

The ALM includes a recycling feedback mechanism that considers
major nutrients (N and P), algal biomass, carbon, and water. For each
of these process streams, model-defaults or user-defined loss rates are
specified and reduced against the total mass and put back in at the top
of production stream for use at the beginning of the next time-step
(for example, see Fig. 3 for water and algal biomass recycling). In the
baseline ALM design configuration, the biomass stream from the lipid
extraction process is sent to an anaerobic digester to produce biogas
(methane) for power production which is then credited towards the
total process energy consumption and associated OpEx. The effluent
stream leaving the anaerobic digester is recycled back to the pond pro-
viding assumed bioavailable nutrients and carbon back to the system
and thus reducing the total new resource requirements, and associated
OpEX, for the subsequent time-step. In addition to process loss rates,
nutrients (N and P) and CO, resource requirements are established
with user-defined stoichiometry to establish demand as a function of
biomass productivity. The baseline ALM configuration uses the demand
ratios established in Williams and Laurens [36] that set the C:N:P to
175:21:1 and the ash-free dry weight biomass composition to protein:
0.47, polysaccharides: 0.28, and lipid: 0.25 and is consistent with the
U.S. DOE harmonization study [28].

2.1.5. Production cost assessment

The ALM performs production cost assessments of the algal produc-
tion system design and outputs the time- and process-aggregated
CapEx and OpEx per gallon of TAG. The production cost assessments
are performed and maintained for each process in the system over the
model time-series, as well as being aggregated throughout the entire
configured system. CapEx are determined by the infrastructure and
equipment required to process the material through the process mod-
ule based on the equipment's capacity. Cost multipliers are applied to
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Fig. 3. Amodified Sankey flow diagram tracking the volume of water, algae and TAG through a variety of ALM process modules, where the width of the stream is proportional to the volume

of each component.
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cover the expense of various aspects associated with acquiring and
installing the equipment including engineering, overhead, administra-
tion, insurance, and permitting. Overhead cost assumptions were de-
rived from ANL et al. [28] and Davis et al. [23]. OpEx represents the
expenses associated with the daily activity of running the algal produc-
tion system. This includes water, nutrient and CO, requirements,
various process materials for dewatering, anaerobic digestion, and
extraction and power requirements for the individual processes. As an
example, the ALM explicitly considers the operating water expense
into the system, recognizing that this is a resource that can be recycled
and used in a variety of capacities. Thus, water from the harvesting and
dewatering steps is recycled back to the cultivation ponds. The on-site
pumping power requirements are factored into the OpEx and control
the total energy cost for bringing new makeup water onsite, whether
this is by local groundwater well pumping or pumping from a surface
water supply via pipeline [16]. In concert with the U.S. DOE harmoniza-
tion study [28], the baseline ALM configuration sends the lipid-
extracted slurry along with the centrifuge supernatant to the anaerobic
digester, for which power generation credits are brought to the produc-
tion system's OpEx. The OpEX are calculated on a daily time-step based
on the material throughput, the quantity of equipment required to pro-
cess the material throughput, and the equipment's performance, in
terms of capacity and throughput, in processing the material.

2.2. Productivity and resource assessment

Algal biomass production data and resource requirement and avail-
ability represent several of the key inputs into the ALM and can vary sig-
nificantly over space and time [13,15,16,18,38]. As a result, TEA models
must be able to capture spatial and temporal variability and assess the
impacts of this variability on the operation of algal production systems.
This is particularly important when driving towards planning and facil-
ity siting at energy scales where the evaluation of regional and national
potentials must come together to meet production targets in the most
economical way possible. Within the ALM, default static biomass pro-
duction and resource requirement values are available to initialize
biomass productivity parameters. While this approach is suitable for
performing sensitivity analyses on different design configurations, it
will likely not capture the temporal and spatial variability of a specific
site or regional/national sites of interest. For this reason, the ALM was
designed to interface with GIS-based resource analysis models and
datasets, such as those found in the BAT [13,15,16], which are able to
provide the spatiotemporal biomass productivity data and inputs for
other resource requirements.

The meteorological patterns around a potential site will have a signif-
icant impact on annual microalgal biomass productivity. Seasonal
variations and extreme weather conditions determine the number of
productive growth days. The BAT is a spatiotemporal resource analysis
and production assessment modeling suite developed at the Pacific
Northwest National Laboratory and performs high-resolution, national-
scale assessments including potential biomass production for multiple
algal strains, land resource suitability and availability, land value and
site preparation costing, water requirements, supply sources and
routing, and more [13,15,16]. The core models within BAT are 1) a full
mass and energy balance hydrodynamic model to determine pond tem-
perature and evaporative water loss [39]; and 2) an in-house developed
biophysical biomass growth model that uses time-varying pond temper-
ature and incoming solar radiation along with biomass growth parame-
terizations that include optimal, sub-optimal, minimum and maximum
temperature ranges, photo conversion efficiency, bioaccumulation effi-
ciency, light utilization efficiency, biomass energy content, lipid content,
and oil density [13]. These core models are driven by 30-years of hourly
local meteorological data to determine biomass production potential and
evaporative water losses. While the models simulate pond temperature
and biomass growth at an hourly time-step in order to capture diurnal
effects, the daily growth is averaged over the daylight hours and

populated to a time-series file that is accessible by other models. The
land suitability analysis is a GIS-based model within the BAT used to de-
termine land resource availability to identify non-sensitive areas for po-
tential algal production systems and is documented at length in
Wigmosta et al. [13]. A unit algal production system is defined as
405 ha of open ponds and 80 ha of associated infrastructure. The
Wigmosta et al. [13] study identified over 11,000 contiguous suitable
areas (~90,000, 485-ha unit farms) within the conterminous United
States.

3. Results and discussion

In order to demonstrate the utility of the modular and dynamic de-
sign of the ALM, site-specific inputs from the BAT-generated national re-
source assessment were passed into the model for several different
candidate sites around the U.S. Analyses were performed using varying
ALM design configurations to assess the impacts of equipment/module
substitution and ordering of processes within the system.

First, as a case study, the harmonized baseline algal production sys-
tem design established by the U.S. DOE [28] was simulated within the
ALM for six locations across the conterminous United States: Tampa,
Florida; Mobile, Alabama; Greenville, North Carolina; Brownsville,
Texas; Las Cruces, New Mexico; and Imperial, California. For these anal-
yses, site-specific algal biomass productivity values were passed into
the ALM from the BAT. Variability of algal productivity at the six selected
sites, sourced from modeled hourly daylight production values to a
mean daily average, were assessed using the long-term mean annual,
long-term mean daily and absolute minimum and maximum daily pro-
duction values over a period of 30-years (Fig. 4). Comparison of the
long-term daily and annual trends in production at the various demon-
strates the importance of factoring in spatiotemporal variability in algal
productivity when designing infrastructure. This is particularly true for
downstream processing equipment in order to minimize the amount
of expensive capital equipment sitting idle during periods of time with
reduced production. It stands to reason that sites with greater variability
should be scaled more closely to the annual production capacity than to
peak capacity; whereas, scaling to maximum capacity at sites with
limited variability in biomass productivity offers an improvement to
production system economics.

Fig. 5 shows the average cost per gallon of TAG at each of the six
study sites when systems are configured to handle peak production
(maximum) capacity over the 30-year simulation, as well as when the
systems are scaled to the 30-year average annual productivity. For
these analyses, daily productivity data was passed into the model, and
daily operating expenses were assessed based on algae, water, nutrient,
and process material throughput. CapEx are assessed based on the
infrastructure required to handle the throughput of each process during
either peak or annual average production. For algal production scenari-
os scaled to the 30-year average annual productivity, system costs were
reduced in all cases with cost reductions ranging from $0.38 to $3.48/
galrac depending on the site. Considering these results along with the
site-specific variability in productivity (Fig. 4), the correlation between
production variability and scaling (30-year long-term daily average ver-
sus the single maximum production value over the same time period) is
evident. For example, modeled costs at the Imperial, California site (based
on inputs using 30-year long-term daily averages) illustrate that only a
modest cost savings ($0.37/galrac) is achievable relative to the maximum
capacity scenario for a site with limited temporal variability. However, at
sites with significant temporal variability, such as Las Cruces, New
Mexico, scaling based upon 30-year long-term daily averages represents
a substantial cost savings ($3.48/galrac). These analyses demonstrate
the potential value of scaling based on site production variability.

While production variability clearly plays a role in the economic vi-
ability of algal biofuels, another key biological variable is lipid content.
The Tampa, Florida location was selected as a model site to explore im-
pacts of productivity in concert with varying degrees of lipid content on
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algal biofuel economic feasibility, specifically as a function of $/gal of
TAG. Fig. 6 simulates the cost of TAG production as a function of theoret-
ical biomass productivity and lipid content using the harmonized base-
line algal production system design [28]. The baseline productivity
scenario used BAT-provided daily values with no multiplier (1x)
under maximum capacity scaling assumptions, which uses the highest
modeled production value observed over 30-years to determine equip-
ment scaling requirements (see Fig. 4, long-term maximum). A total of
40 scenarios were run: BAT-provided daily biomass productivity was
increased and assessed for up to 3 times (3x) the baseline scenario in in-
crements of 0.5x, and lipid content was assessed in 5% increments from
15 to 50%. Increases in productivity and lipid content were considered
since the intent of the analysis was to see if cost targets could be met
solely through bio-engineering an algal strain with high-productivity
and capable of high lipid accumulation. Results show that biological en-
hancements to microalgae alone are not sufficient to reduce the cost of
using microalgae for biofuel production. Advancements in engineering
to existing technologies or development of new, innovative technologies
will be required.

The ALM provides the ability to explore potential impacts of new and
innovative technologies. For example, the Tampa, Florida location was
used to demonstrate the value of the modular structure of the ALM to:
1) explore two algal system design alternatives that incorporated a
new, innovative dewatering technology developed by an industry part-
ner; and 2) address design constraints that may arise due to microalgae
strain selection. While the results themselves are informative, the real
value herein is the demonstration of the inherent modularity of the
ALM structure through equipment substitution and ordering of opera-
tions. Several microalgae currently being investigated for biofuel produc-
tion would not be efficient in the existing baseline design due to
challenges with autoflocculation, and, as a result, alternative dewatering
technologies must be considered. In the present study, we consider a
low-energy, chemical-free, continuous-flow harvesting system that is

Table 1
Scenario comparison between the harmonized and alternative algal system designs.

capable of harvesting directly from the cultivation system and dewatering
up to 95% solids content as an alternative to traditional dewatering tech-
nologies. The specifics of the novel dewatering technology are proprie-
tary, but the general approach involves electroflocculation to induce
clumping, followed by electrolysis within a holding tank, allowing small
bubbles of hydrogen and oxygen to carry the flocks to surface where
they concentrate and can be harvested by mechanical means. The first
design assumed that the selected algal strain would not autoflocculate ef-
ficiently, and therefore, the alternative dewatering technology module
was used to replace the three-stage dewatering modules of the baseline
design. The second design assumed that the algal strain being investigat-
ed could autoflocculate and used sedimentation as a primary harvesting
step. The alternative dewatering technology was applied after sedimenta-
tion replacing flocculation and centrifugation to further dewater the
microalgae from 1 to 20% solids. This takes advantage of the low-cost sed-
imentation process and the low-energy dewatering technology to reduce
costs. For each case, the open-pond infrastructure, productivity, and lipid
content remain constant. Table 1 summarizes the design scenarios inves-
tigated in this study.

In the first design, the alternative dewatering technology was used
for the entire dewatering process and had higher CapEx relative to
the baseline algal production system design, however, exhibited
lower OpEx. The higher CapEx are due to the number of alternative
dewatering technology units required to process the throughput for a
405-ha algal production system, though collectively, they are more en-
ergy efficient than the U.S. DOE harmonization design [28]. In the sec-
ond design, sedimentation served as the primary harvesting step, and
thus less total volume needed to be processed by the alternative
dewatering technology. In this case, CapEx were essentially the same,
and OpEx were lower compared to the baseline algal production system
design (Fig. 7). It is important to note that these particular analyses
were run using novel dewatering equipment designed for laboratory-
scale operations and do not reflect anticipated expenses when

Process Harmonized Design Alternative Design 1 Alternative Design 2

Infrastructure Earthwork and installation of open-pond infrastructure

Cultivation Daily biomass productivity (g/m?-day)

Dewatering Sedimentation-autoflocculation in settling tank to 1% solids Alternative dewatering technology — Sedimentation-autoflocculation in settling
(10 g/L) concentrate to 20% solids (200 g/L) tank to 1% solids (10 g/L)
DAF — chemical flocculation with collection by DAF to 6% Alternative dewatering technology —
solids (60 g/L) concentrate to 20% solids
Centrifugation — concentrate to 20% solids (200 g/L)

Extraction High pressure homogenizer

Liquid-lipid extractor
Anaerobic digestion

Methane production via biomass/water; digestate solid for fertilizer, effluent stream recycled
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Fig. 7. Capital and operating costs of alternative designs as compared to harmonized baseline design.

equipment, designed for large-scale operations, are used. Since the time
of these analyses, our industry partner has developed larger scale equip-
ment in order to reduce the number of units and expense required to
harvest an equivalent volume. The larger scale equipment uses the
same general approach for harvest, but as is the case when processes
are scaled, the larger scale equipment involved a significant engineering
redesign. As dewatering technologies evolve and improvements in
other processes merge, the modular configuration of the ALM can be
leveraged to evaluate these design scenarios.

4. Conclusions

Biofuels, specifically biodiesel derived from microalgae, have
received significant interest as an alternative to conventional fossil
fuels due to growing concerns regarding climate change, global energy
demands, and the need for energy independence. Models capable of
assessing the temporal and spatial aspects of large-scale production
are paramount to understanding commercial- and energy-scale costs
and operation. The value of the model developed here has been demon-
strated through assessments of scaling based on site specific productiv-
ity, concurrent analyses of impacts of lipid content and productivity on
cost, as well as analysis of emerging technologies and impact of ordering
and processing as compared to a baseline design. The ability of the ALM
to interface with site-specific resource assessment data allows for tem-
poral and spatial assessments to be made, thus providing the opportuni-
ty to identify the ideal system design given the local conditions and algal
strain(s) of interest. Moreover, the ALM enables the assessment of mul-
tiple biomass productivity scenarios across thousands of potential algal
production sites to determine the best possible scenario and economic
feasibility of the algal production system to exist and operate. Because
process modules can be added, removed, or interchanged to better un-
derstand how technologies perform within a specific system, the ALM
facilitates integration of emerging technologies and investigation of
alternative ordering of production system processes.

The ALM was used to assess several scenarios. Results showed that
spatial and temporal variability can significantly impact the cost of pro-
ducing biofuel from microalgae. Results also demonstrated that further
investigation of scaling of algal production systems is needed to deter-
mine the optimal size and configuration for potential sites. Assessment
of theoretical algal strains with enhanced biomass production and lipid
content showed that further cost reductions are needed and will have to
come from low cost, low-energy technologies. Lastly, an innovative, al-
ternative dewatering technology from an industry partner was assessed
and shows potential for reducing OpEx associated with dewatering the
microalgae. While many other TEA models can also conduct similar
analyses, the modular and dynamic design of the ALM, as well as its

ability to interface with spatiotemporal resource assessment data,
allow for the efficient computation and analyses of many thousands of
regional or national sites in one model run, makes it a valuable tool for
analysis of multiple dynamic design scenarios.
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